J. For. Sci., 2025, 71(9):426-440 | DOI: 10.17221/51/2025-JFS

Potential of Thuja plicata and Chamaecyparis lawsoniana in the context of global climate change in the Czech RepublicOriginal Paper

Pavel Horák ORCID..., Petra Jablonická ORCID..., Robert Knott ORCID...
Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic

The introduction of non-native tree species is considered a potential adaptation strategy to global climate change (GCC) in the forestry sector. As some of the most widespread native species are undergoing stand disintegration due to both abiotic and biotic stressors, the search for alternative species becomes essential. These species can overwhelm native species with both production potential and adaptation to a changing climate. The research focused on climate-growth relationships of two introduced species of the Cupressaceae family, western redcedar (Thuja plicata Donn ex D. Don) and Lawson's cypress [Chamaecyparis lawsoniana (A. Murray) Parl.], in comparison with the native Scots pine (Pinus sylvestris L.) in the northeast part of the Czech Republic. The constructed tree ring chronologies were used as a basis for dendroclimatological analyses: basal area increment (BAI), linear growth trends, Pearson's correlations between climate variables and growth, resilience indices and others. Among the analysed species, Thuja plicata revealed the highest BAI and the most positive growth trend in the last 35 years, with values 2–3 times higher. The Chamaecyparis lawsoniana exhibited the highest negative correlation with mean summer temperatures. In general, Pinus sylvestris showed the highest correlations with precipitation. No clear pattern in resilience indices has been observed. Among the two introduced tree species examined, Thuja plicata emerges as a particularly promising candidate for future application in Central European conditions under ongoing GCC.

Keywords: climate signal; dendrochronology; introduced tree species; tree ring analysis

Received: July 1, 2025; Revised: August 4, 2025; Accepted: August 12, 2025; Prepublished online: September 25, 2025; Published: September 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Horák P, Jablonická P, Knott R. Potential of Thuja plicata and Chamaecyparis lawsoniana in the context of global climate change in the Czech Republic. J. For. Sci. 2025;71(9):426-440. doi: 10.17221/51/2025-JFS.
Download citation

References

  1. Adams H.D., Luce C.H., Breshears D.D., Allen C.D., Weiler M., Hale V.C., Smith A.M.S., Huxman T.E. (2012): Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5: 145-159. Go to original source...
  2. Andrus R.A., Peach L.R., Cinquini A.R., Mills B., Yusi J.T., Buhl C., Fischer M., Goodrich B.A., Hulbert J.M., Holz A., Meddens A.J.H., Moffett K.B., Ramirez A., Adams H.D. (2024): Canary in the forest? - Tree mortality and canopy dieback of western redcedar linked to drier and warmer summers. Journal of Biogeography, 51: 103-119. Go to original source...
  3. Antos J.A., Filipescu C.N., Negrave R.W. (2016): Ecology of western redcedar (Thuja plicata): Implications for management of a high-value multiple-use resource. Forest Ecology and Management, 375: 211-222. Go to original source...
  4. Augspurger C.K. (2013): Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology, 94: 41-50. Go to original source... Go to PubMed...
  5. Baillie M.G.L., Pilcher J.R. (1973): A simple crossdating program for tree-ring research. Tree-Ring Bulletin, 33: 7-14.
  6. Beran F. (2018): Introdukované dřeviny v lesním hospodářství ČR - Přehled. In: Vacek Z., Podrázský V. (eds): Introdukované dřeviny jako součást českého lesnictví. Kostelec nad Černými lesy, ČLS: 7-18. (in Czech)
  7. Bhuyan U., Zang C., Menzel A. (2017): Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia, 44: 1-8. Go to original source...
  8. Bosela M., Tumajer J., Cienciala E., Dobor L., Kulla L., Marčiš P., Popa I., Sedmák R., Sedmáková D., Sitko R., Šebeň V., Štěpánek P., Büntgen U. (2021): Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Science of the Total Environment, 752: 141794. Go to original source... Go to PubMed...
  9. Brichta J., Šimůnek V., Bílek L., Vacek Z., Gallo J., Drozdowski S., Bravo-Fernández J.A., Mason B., Roig Gomez S., Hájek V., Vacek S., Štícha V., Brabec P., Fuchs Z. (2024): Effects of climate change on Scots pine (Pinus sylvestris L.) growth across Europe: Decrease of tree-ring fluctuation and amplification of climate stress. Forests, 15: 91. Go to original source...
  10. Bunn A.G. (2008): A dendrochronology program library in R (dplR). Dendrochronologia, 26: 115-124. Go to original source...
  11. Buras A. (2017): A comment on the expressed population signal. Dendrochronologia, 44: 130-132. Go to original source...
  12. Buras A., Wilmking M. (2015): Correcting the calculation of Gleichläufigkeit. Dendrochronologia, 34: 29-30. Go to original source...
  13. Cavin L., Mountford E.P., Peterken G.F., Jump A.S. (2013): Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Functional Ecology, 27: 1424-1435. Go to original source...
  14. Cedro A., Nowak G. (2024): A comparison of the chronologies of introduced versus native coniferous tree species growing in northwestern Poland during the period of global warming. Sustainability, 16: 2215. Go to original source...
  15. Cook E.R., Peters K. (1981): The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41: 45-53.
  16. Dendoncker M., Guisset C., Jonard M., Delente A., Ponette Q., Vincke C. (2025): Drought resilience of three coniferous species from Belgian arboreta highlights them as promising alternatives for future forests in Western Europe. Dendrochronologia, 89: 126282. Go to original source...
  17. Dobrý J., Kyncl J., Klinka K., Blackwell B.A. (1996): Dendrochronological study on old-growth forest trees in the Greater Vancouver Water District. In: Dean J.S., Meko D.M., Swetnam T.W. (eds): International Conference on Tree Rings, Environment and Humanity, Tucson, May 17-21, 1994: 105-125.
  18. Ennos R., Cottrell J., Hall J., O'Brien D. (2019): Is the introduction of novel exotic forest tree species a rational response to rapid environmental change? - A British perspective. Forest Ecology and Management, 432: 718-728. Go to original source...
  19. Eyre F.H. (1980): Forest Cover Types of the United States and Canada. Washington, D.C., Society of American Foresters: 148.
  20. FAO (2020): Global Forest Resources Assessment 2020 - Key Findings. Rome, Food and Agriculture Organization of the United Nations: 14.
  21. Franklin J.F., Dyrness C.T. (1973): Natural Vegetation of Oregon and Washington. Portland, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 417.
  22. Gławenda M., Bijak S. (2014): Sygnał klimatyczny w przyrostach rocznych żywotnika olbrzymiego (Thuja plicata) z dwóch stanowisk w Polsce. Zarządzanie ochroną przyrody w lasach, 8: 95-102. (in Polish)
  23. Guehl J.M., Clerc B., Desjeunes J.M. (1985): Etude comparée des potentialités hivernales d'assimilation carbonée de trois conifères de la zone tempérée (Pseudotsuga menziesii Mirb., Abies alba Mill. et Picea excelsa Link.). Annales des Sciences Forestières, 42: 23-38. (in French) Go to original source...
  24. Hoffmann N., Schall P., Ammer C., Leder B., Vor T. (2018): Drought sensitivity and stem growth variation of nine alien and native tree species on a productive forest site in Germany. Agricultural and Forest Meteorology, 256-257: 431-444. Go to original source...
  25. Hoffmann N., Heinrichs S., Schall P., Vor T. (2020): Climatic factors controlling stem growth of alien tree species at a mesic forest site: A multispecies approach. European Journal of Forest Research, 139: 915-934. Go to original source...
  26. Houston Durrant T., Caudullo G. (2016): Chamaecyparis lawsoniana in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Durrant T.H., Mauri A. (eds): European Atlas of Forest Tree Species. Luxembourg, Publication Office of the EU: 81.
  27. Imper D.K., Zobel D.B. (1983): Soils and foliar nutrient analysis of Chamaecyparis lawsoniana and Thuja plicata in southwestern Oregon. Canadian Journal of Forest Research, 13: 1219-1227. Go to original source...
  28. IUSS Working Group WRB (2022): World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th Ed. Vienna, International Union of Soil Sciences (IUSS): 236.
  29. Ivashchenko I., Adamenko S. (2018): Environmental features and resistance to the anthropogenic load of coniferous introducents in the central part of Ukraine. Technology Transfer: Fundamental Principles and Innovative Technical Solutions, 2: 34-36. Go to original source...
  30. Jakhbarova L., Temirov E., Turdiev S., Chorshanbiev F. (2023): Study and reproduction of the representatives of the Cupressaceae family attitude to bioecological factors used in landscaping. In: Beskopylny A., Shamtsyan M., Artiukh V. (eds): XV International Scientific Conference 'INTERAGROMASH 2022'. Cham, Springer International Publishing: 1968-1977. Go to original source...
  31. Jevšenak J. (2020): New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia, 63: 125753. Go to original source...
  32. Jevšenak J., Saražin J. (2023): Pinus halepensis is more drought tolerant and more resistant to extreme events than Pinus nigra at a sub-Mediterranean flysch site. Trees, 37: 1281-1286. Go to original source...
  33. Keszthelyi S., Somfalvi-Tóth K. (2024): A story of becoming a horticultural threat, cypress jewel beetle Lamprodila festiva (Coleoptera, Buprestidae): Analytical approach of its European escalation based on bibliographical sources. Ecologica Montenegrina, 73: 54-71. Go to original source...
  34. Klesse S., Etzold S., Frank D. (2016): Integrating tree-ring and inventory-based measurements of aboveground biomass growth: Research opportunities and carbon cycle consequences from a large snow breakage event in the Swiss Alps. European Journal of Forest Research, 135: 297-311. Go to original source...
  35. Klinka K., Brisco D. (2009): Silvics and Silviculture of Coastal Western Redcedar: A Literature Review. Special Report Series 11. Victoria, Ministry of Forests and Range, Forest Science Program: 105.
  36. Krejza J., Cienciala E., Světlík J., Bellan M., Noyer E., Horáček P., Štěpánek P., Marek M.V. (2021): Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35: 103-119. Go to original source...
  37. Larcher W. (2000): Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems, 134: 279-295. Go to original source...
  38. Lloret F., Keeling E.G., Sala A. (2011): Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120: 1909-1920. Go to original source...
  39. Maxwell R.S., Larsson L.A. (2021): Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia, 67: 125841. Go to original source...
  40. Mérian P., Bontemps J.D., Bergès L., Lebourgeois F. (2011): Spatial variation and temporal instability in climate-growth relationships of sessile oak [Quercus petraea (Matt.) Liebl.] under temperate conditions. Plant Ecology, 212: 1855-1871. Go to original source...
  41. Minore D. (1990): Thuja plicata Donn ex D. Don - Western redcedar. In: Burns R.M., Honkala B.H. (eds): Silvics of North America. Agriculture Handbook 654. Washington, D.C., U.S. Department of Agriculture, Forest Service: 590-600.
  42. Novotný S., Gallo J., Baláš M., Kuneš I., Fuchs Z., Brabec P. (2023): Silvicultural potential of the main introduced tree species in the Czech Republic - Review. Central European Forestry Journal, 69: 188-200. Go to original source...
  43. Ohmann J.A. (1984): Port-Orford-Cedar [Chamaecyparis lawsoniana (A. Murr.) Parl.]. An American Wood.Technical Report. Portland, U.S. Department of Agriculture, Forest Service: 7.
  44. Peel M.C., Finlayson B.L., McMahon T.A. (2007): Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11: 1633-1644. Go to original source...
  45. Pretzsch H., del Río M., Arcangeli C., Bielak K., Dudzinska M., Forrester D.I., Klädtke J., Kohnle U., Ledermann T., Matthews R., Nagel J., Nagel R., Ningre F., Nord-Larsen T., Biber P. (2023): Forest growth in Europe shows diverging large regional trends. Scientific Reports, 13: 15373. Go to original source... Go to PubMed...
  46. R Core Team (2024): R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: https://www.R-project.org/
  47. Scharnweber T., Heußner K.U., Smiljanic M., Heinrich I., van der Maaten-Theunissen M., van der Maaten E., Struwe T., Buras A., Wilmking M. (2019): Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought. Scientific Reports, 9: 2509. Go to original source... Go to PubMed...
  48. Schlüter R., Steinbauer M., Remmele S., Aas G. (2015): Einfluss der Witterung auf den Dickenzuwachs der exotischen Thuja plicata und der einheimischen Picea abies in Süddeutschland. Allgemeine Forst und Jagdzeitung, 186: 205-215. (in German)
  49. Song Y., Sass-Klaassen U., Sterck F., Goudzwaard L., Akhmetzyanov L., Poorter L. (2021): Growth of 19 conifer species is highly sensitive to winter warming, spring frost and summer drought. Annals of Botany, 128: 545-557. Go to original source... Go to PubMed...
  50. Speer J.H. (2010): Fundamentals of Tree-ring Research. Tucson, The University of Arizona Press: 333.
  51. Stokes M.A., Smiley T.L. (1996): An Introduction to Tree-ring Dating. Tucson, The University of Arizona Press: 73.
  52. Strobel B.W., Jensen P.H., Rasmussen L.H., Hansen H.C.B. (2005): Thujone in soil under Thuja plicata. Scandinavian Journal of Forest Research, 20: 7-11. Go to original source...
  53. Treml V., Mašek J., Tumajer J., Rydval M., Čada V., Ledvinka O., Svoboda M. (2022): Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in Central Europe. Global Change Biology, 28: 557-570. Go to original source... Go to PubMed...
  54. Van der Maaten-Theunissen M., Trouillier M., Schwarz J., Skiadaresis G., Thurm E.A., van der Maaten E. (2021): pointRes 2.0: New functions to describe tree resilience. Dendrochronologia, 70: 125899. Go to original source...
  55. Vicente-Serrano S.M., Beguería S., López-Moreno J.I. (2010): A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23: 1696-1718. Go to original source...
  56. Viewegh J., Kusbach A., Mikeska M. (2003): Czech forest ecosystem classification. Journal of Forest Science, 49: 85-93. Go to original source...
  57. Vitasse Y., Bottero A., Cailleret M., Bigler C., Fonti P., Gessler A., Lévesque M., Rohner B., Weber P., Rigling A., Wohlgemuth T. (2019): Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 25: 3781-3792. Go to original source... Go to PubMed...
  58. Vose J.M., Clark J.S., Luce C.H., Patel-Weynand T. (2016): Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis. General Technical Report WO-93b. Washington, D.C., U.S. Department of Agriculture, Forest Service, Washington Office: 289. Go to original source...
  59. Zeileis A., Leisch F., Hornik K., Kleiber C. (2002): strucchange: An R package for testing for structural change in linear regression models. Journal of Statistical Software, 7: 1-38. Go to original source...
  60. Zobel D.B. (1990): Chamaecyparis lawsoniana (A. Murr.) Parl. Port-Orford-Cedar. In: Burns R.M., Honkala B.H. (eds): Silvics of North America. Agriculture Handbook 654. Washington, D.C., U.S. Department of Agriculture, Forest Service: 88-96.
  61. Zobel D.B., Roth L.F., Hawk G.M. (1982): Ecology, Pathology, and Management of Port-Orford-Cedar (Chamaecyparis lawsoniana). General Technical Report PNW-GTR-184. Portland, Department of Agriculture, Forest Service, Pacific Northwest Research Station: 171. Go to original source...
  62. Zolles A., Vospernik S., Schüler S. (2025): Effects of soil parameters of radial stem growth of four spruce stands in Austria. Frontiers in Forests and Global Change, 8: 1523834. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.